Análisis del sistema de alumbrado público de tipo sodio, mercurio y led con paneles fotovoltaicos
DOI:
https://doi.org/10.56183/iberotecs.v3i1.606Palavras-chave:
Alumbrado público, efecto invernadero, eficiencia energética, luminaria, paneles fotovoltaicos.Resumo
El artículo trata sobre la comparación entre el alumbrado público de sodio y mercurio versus el uso de tecnología LED en combinación con paneles fotovoltaicos para el suministro de energía. El estudio se enfocó en evaluar los costos de implementación, el consumo de energía, el análisis de la eficiencia energética y la calidad de la iluminación en ambos sistemas. El alumbrado público es una parte esencial de la infraestructura urbana y su correcto funcionamiento es clave para la seguridad y el bienestar de la población. En los últimos años, se ha observado una tendencia a la sustitución de la iluminación convencional, basada en lámparas de vapor de sodio y mercurio, por tecnologías más eficientes y sostenibles, como la iluminación LED y los paneles solares. Los resultados indican que la combinación de LED y paneles solares ofrece una serie de ventajas en comparación con el alumbrado público convencional, incluyendo una mayor eficiencia energética, una reducción significativa de emisiones de gases de efecto invernadero y una mayor vida útil de las lámparas LED. Se observa que esta tecnología es más rentable a largo plazo, ya que requiere menos mantenimiento y su tiene una vida útil más larga. Sin embargo, se reconoce que la inversión inicial necesaria para la instalación de la tecnología LED con paneles fotovoltaicos es mayor que la inversión inicial necesaria para la instalación de las tecnologías convencionales. Sin embargo, el estudio también señala que el costo y la eficacia de estos sistemas pueden variar según la ubicación geográfica y las condiciones climáticas.
Referências
Or.) IEEE Power & Energy Society. General Meeting (2018: Portland and Institute of Electrical and Electronics Engineers, 2018 IEEE Power & Energy Society General Meeting (PESGM).
D. A. Doughty, R. H. Wilson, and E. G. Thaler, “Mercury‐Glass Interactions in Fluorescent Lamps,” J Electrochem Soc, vol. 142, no. 10, pp. 3542–3550, Oct. 1995, doi: 10.1149/1.2050019/META.
C. Hirayama, K. F. Andrew, and R. L. Kleinosky, “The vapor pressures of sodium and mercury over sodium amalgams at HPS lamp operating temperatures,” Journal of the Illuminating Engineering Society, vol. 12, no. 2, pp. 66–69, 1983, doi: 10.1080/00994480.1983.10748819.
P. Aghion, D. Comin, P. Howitt, and I. Tecu, “When does domestic savings matter for economic growth,” IMF Economic Review, vol. 64, no. 3, pp. 381–407, Dec. 2016, doi: 10.1057/IMFER.2015.41.
N. F. Watson, “Health care savings: The economic value of diagnostic and therapeutic care for obstructive sleep apnea,” Journal of Clinical Sleep Medicine, vol. 12, no. 8, pp. 1075–1077, 2016, doi: 10.5664/JCSM.6034.
L. Tähkämö, R. S. Räsänen, and L. Halonen, “Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting,” International Journal of Life Cycle Assessment, vol. 21, no. 2, pp. 137–145, Feb. 2016, doi: 10.1007/S11367-015-1000-X.
L. Tähkämö, M. Bazzana, P. Ravel, F. Grannec, C. Martinsons, and G. Zissis, “Life cycle assessment of light-emitting diode downlight luminaire - A case study,” International Journal of Life Cycle Assessment, vol. 18, no. 5, pp. 1009–1018, Jun. 2013, doi: 10.1007/S11367-012-0542-4.
H. Honda, A. Ishizaki, R. Soma, K. Hashimoto, and A. Fujishima, “Application of photocatalytic reactions caused by tio2 film to improve the maintenance factor of lighting systems,” Journal of the Illuminating Engineering Society, vol. 27, no. 1, pp. 42–49, 1998, doi: 10.1080/00994480.1998.10748209.
J. Casamayor, D. Su, & Z. R.-L. R., and undefined 2018, “Comparative life cycle assessment of LED lighting products,” journals.sagepub.com, vol. 50, no. 6, pp. 801–826, Oct. 2017, doi: 10.1177/1477153517708597.
E. L. Stone, A. Wakefield, S. Harris, and G. Jones, “The impacts of new street light technologies: Experimentally testing the effects on bats of changing from lowpressure sodium to white metal halide,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 370, no. 1667, May 2015, doi: 10.1098/RSTB.2014.0127.
T. Longcore, A. Rodríguez, B. Witherington, J. F. Penniman, L. Herf, and M. Herf, “Rapid assessment of lamp spectrum to quantify ecological effects of light at night,” J Exp Zool A Ecol Integr Physiol, vol. 329, no. 8–9, pp. 511–521, Oct. 2018, doi: 10.1002/JEZ.2184.
J. P. Frier and A. J. Henderson, “Stroboscopic Effect of High Intensity Discharge Lamps,” Journal of the Illuminating Engineering Society, vol. 3, no. 1, pp. 83–86, Oct. 1973, doi: 10.1080/00994480.1973.10732230.
P. L. Denbigh, “Effect of sodium/mercury ratio and amalgam temperature on the efficacy of 400 W high-pressure sodium lamps,” Lighting Research & Technology, vol. 6, no. 2, pp. 62–68, 1974, doi: 10.1177/096032717400600202.
K. Otani, K. Kawahara, K. Watanabe, and M. Tsuchihashi, “A high pressure sodium lamp with improved color rendition,” Journal of the Illuminating Engineering Society, vol. 11, no. 4, pp. 231–240, 1982, doi: 10.1080/00994480.1982.10747931.
A. G. Jack and L. E. Vrenken, “FLUORESCENT LAMPS AND LOW PRESSURE SODIUM LAMPS.,” IEE Proceedings A: Physical Science. Measurement and Instrumentation. Management and Education. Reviews, vol. 127, no. 3, pp. 149–157, 1980, doi: 10.1049/IP-A-1.1980.0025.
K. Günther, H. ‐G Kloss, T. Lehmann, R. Radtke, and F. Serick, “Pulsed Operation of High‐Pressure‐Sodium Discharge Lamps,” Contributions to Plasma Physics, vol. 30, no. 6, pp. 715–724, 1990, doi: 10.1002/CTPP.2150300603.
T. Taguchi, “Present status of energy saving technologies and future prospect in white LED lighting,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, pp. 21–26, 2008, doi: 10.1002/TEE.20228.
O. O. Bamisile, M. Dagbasi, S. Abbasoglu, © Olusola, O. Bamisile, and O. Olorunfemi Bamisile, “Economic feasibility of replacing sodium vapor and high pressure mercury vapor bulbs with LEDs for street lighting,” Taylor & Francis, vol. 3, no. 1, pp. 27–31, Jan. 2016, doi: 10.1080/23815639.2016.1201442.
T. H. Quang Minh, N. H. Khanh Nhan, N. D. Quoc Anh, and H. Y. Lee, “Red-emitting α-SrO·3B2O3:Sm2+ phosphor: an innovative application for increasing color quality and luminous flux of remote phosphor white LEDs,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, vol. 40, no. 4, pp. 313–317, May 2017, doi: 10.1080/02533839.2017.1318720.
A. Khalil, Z. Rajab, M. Amhammed, A. A.-A. S. Energy, and undefined 2017, “The benefits of the transition from fossil fuel to solar energy in Libya: A street lighting system case study,” Springer, vol. 53, no. 2, pp. 59–72, Apr. 2017, doi: 10.3103/S0003701X17020086.
C. R. B. S. Rodrigues, P. S. Almeida, G. M. Soares, J. M. Jorge, D. P. Pinto, and H. A. C. Braga, “An Experimental Comparison Between Different Technologies Arising for Public Lighting: LED Luminaires Replacing High Pressure Sodium Lamps.”
D. B. Howard, R. Soria, J. Thé, R. Schaeffer, and J.-D. Saphores, “The energy-climate-health nexus in energy planning: A case study in Brazil,” Renewable and Sustainable Energy Reviews, vol. 132, p. 110016, Oct. 2020, doi: 10.1016/j.rser.2020.110016.
F. Bai, R. Yan, and T. K. Saha, “Impact of Power Fluctuations on Voltage Variations for Remote Distribution Networks with High PV Penetrations,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, Aug. 2018, pp. 1–5. doi: 10.1109/PESGM.2018.8586468.
S. Yoomak, C. Jettanasen, A. Ngaopitakkul, S. Bunjongjit, and M. Leelajindakrairerk, “Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system,” Energy Build, vol. 159, pp. 542–557, Jan. 2018, doi: 10.1016/j.enbuild.2017.11.060.
J. H. Yoon, J. Song, and S. J. Lee, “Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module,” Solar Energy, vol. 85, no. 5, pp. 723–733, May 2011, doi: 10.1016/j.solener.2010.12.026.
A. O. Otuoze, M. W. Mustafa, and R. M. Larik, “Smart grids security challenges: Classification by sources of threats,” Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 468–483, Dec. 2018, doi: 10.1016/j.jesit.2018.01.001.
K.-C. Wu et al., “The Photophysical Properties of Dipyrenylbenzenes and Their Application as Exceedingly Efficient Blue Emitters for Electroluminescent Devices,” Adv Funct Mater, vol. 18, no. 1, pp. 67–75, Jan. 2008, doi: 10.1002/adfm.200700803.
B. Xu et al., “Bright and efficient light-emitting diodes based on MA/Cs double cation perovskite nanocrystals,” J Mater Chem C Mater, vol. 5, no. 25, pp. 6123–6128, 2017, doi: 10.1039/c7tc01300k.
Z. KARAGÖZ KÜÇÜK and N. EKREN, “Light Pollution and Smart Outdoor Lighting,” Balkan Journal of Electrical and Computer Engineering, Apr. 2021, doi: 10.17694/bajece.874343.
C.-C. Hsieh and Y.-H. Li, “The Study for Saving Energy and Optimization of LED Street Light Heat Sink Design,” Advances in Materials Science and Engineering, vol. 2015, pp. 1–5, 2015, doi: 10.1155/2015/418214.
K. J. Gaston, J. Bennie, T. W. Davies, and J. Hopkins, “The ecological impacts of nighttime light pollution: a mechanistic appraisal,” Biological Reviews, vol. 88, no. 4, pp. 912–927, Nov. 2013, doi: 10.1111/brv.12036.
P. DE La Red Y Sus Efectos En La Capacidad De Generacion, A. Busso, and L. Horacio Vera, “SISTEMAS FOTOVOLTAICOS CONECTADOS A RED: ESTABILIDAD EN LOS,” 2013. [Online]. Available: https://www.researchgate.net/publication/316461089
M. Aybar-Mejía, J. Villanueva, D. Mariano-Hernández, F. Santos, and A. Molina-García, “A Review of Low-Voltage Renewable Microgrids: Generation Forecasting and Demand-Side Management Strategies,” Electronics (Basel), vol. 10, no. 17, p. 2093, Aug. 2021, doi: 10.3390/electronics10172093.
M. N. Bhairi, S. S. Kangle, M. S. Edake, B. S. Madgundi, and V. B. Bhosale, “Design and implementation of smart solar LED street light,” in 2017 International Conference on Trends in Electronics and Informatics (ICEI), IEEE, May 2017, pp. 509–512. doi: 10.1109/ICOEI.2017.8300980.
W. Sutopo, I. S. Mardikaningsih, R. Zakaria, and A. Ali, “A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study,” Energies (Basel), vol. 13, no. 3, p. 630, Feb. 2020, doi: 10.3390/en13030630.
L. Al-Kurdi, R. Al-Masri, A. A.-S.-Int. J. of T. & Environmental, and undefined 2015, “Economical Investigation of the Feasibility of Utilizing the PV Solar Lighting for Jordanian Streets,” International Journal of Thermal and Environmental Engineering, vol. 10, no. 1, pp. 79–85, 2015, doi: 10.5383/ijtee.10.01.012.
S. Pawson, M. B.-E. Applications, and undefined 2014, “LED lighting increases the ecological impact of light pollution irrespective of color temperature,” Wiley Online Library, vol. 24, no. 7, pp. 1561–1568, Oct. 2014, doi: 10.1890/14-0468.1.
Chere-Quiñónez, B. F., Ulloa-de Souza, R. C., & Reyna-Tenorio, L. J. (2022). Tecnología en iluminación domiciliaria: paneles fotovoltaicos y energía ecológica. Sapienza: International Journal of Interdisciplinary Studies, 3(7), 111-123.
García-Tenorio, F. A., Simisterra-Quintero, J. J., Barre-Cedeño, K. N., Bautista-Sánchez, J. V., & Chere-Quiñónez, B. F. (2022). Evaluación técnica, económica y ambiental del cambio del sistema de alumbrado público de la ciudadela Costa Verde-Esmeraldas a tecnología LED. Sapienza: International Journal of Interdisciplinary Studies, 3(7), 245-260.
Loor Vélez, C. A. ., & Loor Cevallos, M. E. . (2022). Simulación de un sistema de almacenamiento híbrido batería – supercondensadores aplicados en un sistema fotovoltaico. Sapienza: International Journal of Interdisciplinary Studies, 3(6), 73–81. https://doi.org/10.51798/sijis.v3i6.486
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Jefferson Rafael Alcívar-Centeno, Wilson Reinaldo Loor-Chalar, Hiltan Jordán Vargas-Quiñonez, Edson Francisco Quiñónez-Guagua, Francisco Abel Gresely-Santi
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.